If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-242=0
a = 2; b = 0; c = -242;
Δ = b2-4ac
Δ = 02-4·2·(-242)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44}{2*2}=\frac{-44}{4} =-11 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44}{2*2}=\frac{44}{4} =11 $
| 39.99m+0.45=44.99+0.40 | | 4/16=w/20 | | s-13=1 | | 40/50=20/n | | 56x=9 | | x+x-10+x-10=180 | | 93+3x+18=90 | | 151000000=1.19n | | 10x-8+6x+2=90 | | 4x–5=3x+1 | | 7×+6=90-5x | | 4m^2−21m+10=−5m^2 | | 2v-v+v=8 | | (2x+2/4)=189.5 | | -3(7v-2)+8v=2(v+9) | | 147-3x-3=180 | | x+0,1x+0,1x=180 | | 4/7x=18 | | 5(v-63)=95 | | 10m+2=18+12m | | 7(10+3x)=49 | | 2.5m+10=30 | | (-2)(x)=3x2 | | 24/3=n/2 | | 2m+154=58 | | 21x+8=13x-6 | | 10y+y+2y-11y-y=11 | | 5(y-3)-8=-2(-9y+4)-7y | | 4m^2−21m+10=-5m^2 | | 4x7=11 | | x–12=17 | | 1/2K-3=6-6m |